Journal of Organometallic Chemistry, 414 (1991) 319-325 Elsevier Sequoia S.A., Lausanne JOM 21844

Verbindungen des Germaniums und Zinns

VII *. Ein Distannan mit sehr langer Sn-Sn-Bindung und synperiplanarer Konformation **

Manfred Weidenbruch *, Josephin Schlaefke

Fachbereich Chemie der Universität Oldenburg, Carl-von-Ossietzky-Strasse 9-11, W-2900 Oldenburg (Deutschland)

Karl Peters und Hans Georg von Schnering

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, W-7000 Stuttgart 80 (Deutschland) (Eingegangen den 6. März 1991)

Abstract

Treatment of di-t-butyl(chloro)-2,4,6-triisopropylphenylstannane with t-butyllithium gives tetra-tbutyl-1,2-bis(2,4,6-triisopropylphenyl)distannane (5) which shows restricted rotations about the Sn-Cand/or Sn-Sn bonds even at high temperatures. The X-ray structure analysis of 5 reveals a very long Sn-Sn bond distance of 303.4(1) pm and an unusual arrangement of the substituents around the tin atoms. All groups adopt an eclipsed conformation with a *syn* orientation of the bulky aryl groups.

Zusammenfassung

Umsetzung von Di-t-butyl(chlor)-2,4,6-triisopropylphenylstannan mit t-Butyllithium ergibt Tetra-tbutyl-1,2-bis(2,4,6-triisopropylphenyl)distannan (5), das auch bei höheren Temperaturen Rotationshinderungen um die Sn-C- und/oder Sn-Sn-Bindungen aufweist. Die Röntgenstrukturanalyse von 5 zeigt eine sehr gedehnte Sn-Sn-Bundungslänge von 303.4(1) pm und eine ungewöhnliche Anordnung der Organylgruppen um die Zinnatome. Alle Substituenten nehmen die ekliptische Konformation ein mit einer syn-Orientierung der raumerfüllenden Arylgruppen zueinander.

Einführung

Die Bindungslängen homonuklearer Einfachbindungen zwischen den schwereren Elementen der 4. Hauptgruppe sind stark von der Raumerfüllung der jeweiligen

** Herrn Professor Dr. Joseph Grobe zum 60. Geburtstag am 02.11.1991 gewidmet.

^{*} VI. Mitteilung siehe Ref. 1.

Substituenten abhängig. So weisen Hexa-t-butyldisilan [2] mit 269.7 pm und Hexat-butyldigerman [3] mit 271.4 pm gegenüber den normalen Einfachbindungslängen von 234 bzw. 244 pm erhebliche Bindungsdehnungen auf. Die Länge von Zinn-Zinn-Bindungen variiert zwischen 269 und 297 pm [4], im Falle eines Hexaaryldistannans wurde sogar ein Wert von 305.2 pm [5] ermittelt. Um die Streckung oder auch Stauchung dieser Bindung einordnen zu können, wurde kürzlich der Sn-Sn-Abstand von Hexamethyldistannan durch Elektronenbeugung in der Gasphase zu 278 pm ermittelt, der als Referenz für die typische Einfachbindungslänge gelten kann [6]. Aus dem Rahmen fällt der endocyclische Sn-Sn-Abstand von 336.7 pm in einem Pentastanna[1.1.1]propellan [5], der vermutlich eher einem Singulett-Biradikal zuzuordnen ist.

Im Folgenden berichten wir über Umsetzungen einiger Arylchlorstannane mit t-Butyllithium, die in einem Falle ebenfalls zu einem Distannan mit sehr großer Sn-Sn-Bindungslänge führt.

Ergebnisse und Diskussion

Die Einwirkung von t-Butyllithium auf Arylchlorstannane führt in Abhängigkeit von der Raumerfüllung der *ortho*-Alkylgruppen zu unterschiedlichen Produkttypen (Schema 1). So reagiert Di-t-butyl(chlor)mesitylstannan (1) [7] mit dem Lithiumalkyl glatt unter Transalkylierung zu Tri-t-butylmesitylstannan (4).

Während 1 ausgeprägte Rotationshinderungen um die Sn-C(Aryl)-Bindung aufweist [7], zeigt die sterisch noch stärker überladene Verbindung 4 im Protonenspektrum nur die bei uneingeschränkter Drehbarkeit um alle Bindungen zu erwartenden Signale. Offensichtlich führt der Ersatz des Chloratoms in 1 durch die

Fig. 1. Molekül von 5 im Kristall mit der Benennung der Atome wie in Tab. 1 und 2 (ohne Wasserstoffatome).

Schema 1.

t-Butylgruppe zu einer Anordnung der Liganden, die korrelierte Rotationen um alle Sn-C-Bindungen zuläßt.

Die analog vorgenommene Umsetzung von Di-t-butyl(chlor)-2,4,6-triisopropylphenylstannan (2) mit t-Butyllithium liefert hingegen kein Transalkylierungsprodukt, vielmehr kommt es zur Bildung einer Stannyllithiumverbindung, die mit weiterem 2 das Distannan 5 ergibt. Die sterische Überladung der Zinnatome in 5 manifestiert sich im ¹H-NMR-Spektrum durch das Auftreten stark verbreiterter Signalgruppen, die mit Ausnahme der Signale für die *para*-Isopropylphenylgruppe nicht eindeutig zugeordnet werden können. Auch bei schrittweiser Temperaturerhöhung bis 343 K bleiben die Rotationshinderungen um die Sn-C- und vermutlich auch Sn-Sn-Bindungen erhalten.

Die Röntgenstrukturanalyse von 5 (Fig. 1, Tab. 1 und Tab. 2) verdeutlicht die Abschirmung der Zinnatome durch die hochverzweigten Liganden und zeigt zusätzlich einige bemerkenswerte Details auf. Mit 303.4(1) pm ist der Zinn-Zinn-Abstand extrem gedehnt. Auch die Sn-C-Bindungen sind vergleichsweise lang und entsprechen denen in Hexa-t-butyldistannan [4]. Auffälligstes Merkmal ist jedoch die Konformation von 5 im festen Zustand. Während Hexaorganyldistannane sonst ideal oder nahezu ideal gestaffelte Konformationen bevorzugen [4], nehmen die Liganden in 5 eine synperiplanare Anordnung ein (Fig. 2). Offensichtlich vermag die ekliptische Konformation in Verbindung mit den beobachteten Bindungsdehnungen und einer Verdrehung der Arylringebenen um 66° gegeneinander die enormen intramolekularen Abstoßungen zwischen den sechs raumerfüllenden Gruppen zu reduzieren.

Wird nach Schema 1 die Verzweigung der ortho-Alkylsubstituenten in den Arylchlorstannanen weiter gesteigert, so ist kein Angriff an der Zinn-Chlor-Bindung unter Transalkylierung oder Zinn-Zinn-Bindungsknüpfung mehr möglich. Im Falle von 4 greift die Base t-Butyllithium vielmehr an einer der ortho-ständigen t-Butylphenyl-C-H-Bindungen unter Bildung eines Carbanions an, das dann durch Chlorideliminierung das Stannaindan-Derivat 6 [7] liefert. Diese Ergebnisse machen

Fig. 2. Newman-Projektion von 5 entlang der Sn-Sn-Bindung.

Tabelle 1

Ortsparameter (×10⁴); isotrope Temperaturkoeffizienten U_{eq} (pm²×10⁻¹) (Standardabweichungen) von 5

Atom	x	у	2	U
Sn(1)	5044(1)	3009(1)	5275(1)	47(1)
Sn(2)	6010(1)	1937(1)	6659(1)	46(1)
C(1)	5932(4)	3326(2)	3834(4)	49(2)
C(2)	7373(4)	3394(2)	4358(4)	56(2)
C(3)	7991(4)	3762(2)	3745(5)	65(2)
C(4)	7266(5)	4055(2)	2609(5)	61(2)
C(5)	5863(5)	3952(2)	2021(4)	61(2)
C(6)	5190(4)	3596(2)	2600(4)	51(2)
C(7)	6877(4)	1415(2)	5434(4)	45(2)
C(8)	8137(4)	1205(2)	6115(4)	49(2)
C(9)	8619(4)	887(2)	5282(4)	59(2)
C(10)	7907(5)	763(2)	3759(5)	58(2)
C(11)	6660(5)	947(2)	3099(4)	58(2)
C(12)	6123(4)	1260(2)	3893(4)	51(2)
C (13)	5589(6)	3876(2)	6695(5)	70(3)
C(14)	2746(5)	2789(3)	4397(5)	68(3)
C(15)	8293(4)	3025(3)	5437(5)	70(3)
C(16)	7954(6)	4475(3)	1995(6)	81(3)
C(17)	3630(4)	3486(2)	1754(4)	63(2)
C(18)	7373(5)	2327(2)	9052(4)	62(2)
C(19)	4571(5)	1220(2)	6795(5)	67(3)
C(20)	9043(4)	1298(2)	7761(4)	64(2)
C(21)	8534(5)	439(3)	2914(5)	74(3)
C(22)	4700(4)	1417(2)	2995(4)	63(2)
C(23)	9643(5)	3377(3)	6634(5)	98(2)
C(24)	8566(5)	2525(3)	4574(6)	88(3)
C(25)	9786(7)	4361(3)	2132(7)	114(5)
C(26)	9200(7) 8008(8)	5080(3)	2570(0)	160(7)
C(27)	2086(5)	4050(3)	1537(5)	86(2)
C(28)	3144(5)	3110(3)	269(5)	84(3)
C(29)	10460(5)	1626(3)	209(J) 8206(S)	04(3) 04(3)
C(30)	Q151(6)	727(3)	8200(J) 8404(5)	94(3) 88(3)
C(31)	7569(6)	175(3)	1304(6)	08(4)
C(31)	9672(5)	175(5) 850(3)	1374(0)	70(4) 00(2)
C(32)	9072(3) A710(6)	1950(3)	2070(0)	99(3)
C(33)	4/10(0)	16J0(J) 974(3)	1709(J) 2070(6)	60(<i>3</i>) 102(2)
C(34)	5000(5)	674(3)	2070(0)	102(3)
C(35)	2090(0) 4907(6)	4324(2)	2040(2) 7700(5)	91(3)
C(30)	4907(0)	3733(3) 4050(2)	7709(5)	95(4)
(37)	/134(0)	4039(2)	/02/(5)	91(3)
(38) ((38)	1931(3)	3304(3)	4022(0)	84(3)
C(39)	2007(5)	2302(3)	2002(0)	99(4)
C(40)	2110(5)	2308(3)	3092(0)	85(3)
Q(41) Q(42)	0318(0)	2/21(2)	9428(3)	82(3)
C(42)	/819(3) 9645(5)	1900(2)	101/3(4)	79(3)
C(43)	8042(2) 4005(()	2/10(2)	9207(5)	77(3)
C(44)	4093(6)	1391(3)	/¥/1(6)	105(4)
C(45)	5 <i>5</i> 83(5)	721(3)	7248(6)	86(3)
(40)	3328(6)	984(3)	5363(6)	121(4)

$\overline{\mathrm{Sn}(1)-\mathrm{Sn}(2)}$	303.4(1)	Sn(1)-C(1)	224.3(5)	
Sn(1) - C(13)	224.4(5)	Sn(1)-C(14)	226.9(5)	
Sn(2) - C(7)	223.7(5)	Sn(2) - C(18)	227.5(4)	
Sn(2)-C(19)	224.8(6)			
Sn(2)-Sn(1)-C(1)	116.9(1)	Sn(2)-Sn(1)-C(13)	120.0(1)	
C(1)-Sn(1)-C(13)	94.3(2)	Sn(2)-Sn(1)-C(14)	101.6(2)	
C(1)-Sn(1)-C(14)	120.5(2)	C(13)-Sn(1)-C(14)	104.0(2)	
Sn(1) - Sn(2) - C(7)	111.7(1)	Sn(1)-Sn(2)-C(18)	101.7(1)	
C(7)-Sn(2)-C(18)	119.4(2)	Sn(1)-Sn(2)-C(19)	122.2(1)	
C(7)-Sn(2)-C(19)	99.3(2)	C(18) - Sn(2) - C(19)	103.5(2)	

Ausgewählte Bindungslängen (pm) und Bindungswinkel (°) mit Standardabweichungen von 5

deutlich, wie sehr das Reaktionsverhalten sterisch überladener Arylchlorstannane vom Verzweigungsgrad der ortho-Alkylsubstituenten abhängig ist.

Experimentelles

Zur Aufnahme der Spektren dienten folgende Geräte. ¹H-NMR und ¹³C-NMR (C_6D_6): Bruker AM 300; Massenspektren: Varian-MAT 212. Die Elementaranalysen führten die Analytischen Laboratorien, W-5250 Engelskirchen, durch.

Tri-t-butyl-2,4,6-trimethylphenylstannan (4)

Bei 0 °C wurden zu einer Suspension aus 6.4 g (16 mmol) 1 und 50 ml Petrolether 40–60 °C ca. 32 mmol t-Butyllithium in n-Pentan getropft und das Gemisch 1 h bei 0 °C und anschließend 24 h bei Raumtemperatur gerührt. Nach Abtrennen des Lithiumchlorids und Abdestillieren aller leichtflüchtigen Produkte im Vakuum resultierte ein orangefarbener öliger Rückstand. Kristallisation aus Petrolether 40–60 °C bei -25 °C ergab 3.9 g (58%) farblose Kristalle von 4, Fp. 75 °C, ¹H-NMR: δ 1.40 (s, 27H, ³J(¹¹⁹SnH) 30.0 Hz; ³J(¹¹⁷SnH) 28.7 Hz); 2.18 (s, 3H); 2.55 (s, 6H); 6.85 (s, 2H, ⁴J(^{119/117}SnH) 5.9 Hz). ¹³C-NMR: δ 20.65 (*p*-CH₃); 29.73 (*o*-CH₃); 33.64 (C_q); 33.87 (¹Bu-CH₃); 128.64 (CH-Aryl); 137.03 (C_q); 144.88 (C_q). MS (CI, Isobutan): *m/z* 353 (*M*⁺-C₄H₉, 100%), 291 (*M*⁺-C₉H₁₁, 94). Gef. C, 61.36; H, 9.22. C₂₁H₃₈Sn (409.23) ber.: C, 61.63; H, 9.63%.

Di-t-butyl(chlor)-2,4,6-triisopropylphenylstannan (2)

Zu einer Suspension aus ca. 40 mmol 2,4,6-Triisopropylphenyllithium, das aus 11.5 g (40 mmol) 1-Brom-2,4,6-triisopropylbenzol und 44 mmol n-Butyllithium in Hexan gebildet worden war, und 70 ml Petrolether 40–60 °C wurden bei – 40 °C 5.0 g (16 mmol) Di-t-butyldichlorstannan [8], gelöst in 40 ml Petrolether 40–60 °C, getropft. Das Gemisch wurde 1 h bei – 40 °C und 12 h bei Raumtemperatur gerührt und anschließend 24 h unter Rückfluß erhitzt. Nach der Abtrennung des Salzes und der Lösungsmittel ergab die Kristallisation des gelben öligen Rückstands bei – 25 °C aus Isopropanol 8.7 g (64%) farblose Kristalle von 2, Fp. 92–94 °C. ¹H-NMR (Aceton- d_6): δ 1.23 (d, 6H, ³J(HH) 6.8 Hz); 1.27 (d, 12H, ³J(HH) 6.8 Hz); 1.39 (s, 18H); 2.75 (m, 3H); 7.19 (s, 2H, ⁴J(^{119/117}SnH) 9.5 Hz). ¹³C-NMR: δ 24.01 (C_p); 26.11 (C_p); 31.03 (C_p, ¹Bu); 32.06 (C₁); 34.41 (C₁); 38.19 (C_q); 122.35 (CH); 122.62

Tabelle 2

(CH); 137.72 (C_q); 147.89 (C_q); 150.60 (C_q). MS (CI, Isobutan): m/z 415 ($M^+ - {}^{t}Bu$, 14%). Gef.: C, 57.58; H, 8.10. C₂₃H₄₁ClSn (471.5) ber.: C, 58.54; H, 8.69%.

1,1,2,2,-Tetra-t-butyl-1,2-bis(2,4,6-triisopropylphenyl)distannan (5)

Zu 5.8 g (12 mmol) 2 in 50 ml Petrolether 40–60 °C wurden bei 0 °C 24 mmol t-Butyllithium in n-Pentan getropft und das Gemisch 1 h bei 0 °C, 12 h bei Raumtemperatur und nachfolgend 24 h unter Rückfluß erhitzt. Lithiumchlorid und die Lösungsmittel wurden abgetrennt und der verbleibende ölige Rückstand mehrfach bei -25 °C aus n-Pentan kristallisiert. Es resultierten 2.5 g (47%) farblose rautenförmige Kristalle, Fp. 140 °C (schmelzen zu einer roten Flüssigkeit). ¹H-NMR: (s. Text). ¹³C-NMR: δ 24.04 (C_p); 25.98 (C_p); 26.74 (C_p); 33.86 (C₁); 34.15 (C₁); 37.04 (C_q); 38.59 (C_q); 122.29 (CH); 122.80 (CH); 147.15, 148.89, 155.24, 155.89. Gef.: C, 63.73; H. 9.39. C₄₆H₈₂Sn₂ (872.58) ber.: C, 63.32; H, 9.47%.

Röntgenstrukturanalyse von 5

Empirische Formel: $C_{46}H_{82}Sn_2$, molare Masse: 872.58; *a* 1104.4(1), *b* 2331.8(3), *c* 1025.8(1) pm; α 95.04(1), β 116.35(1), γ 95.65(1)°; *V* 2330.1(1) × 10⁶ pm³, *Z* 2, d_{ber} 1.244 g cm⁻³. Kristallsystem: triklin, Raumgruppe $P\overline{1}$. Diffraktometer: Siemens R3m/V, Mo- K_{α} -Strahlung, Graphitmonochromator. Kristallgröße 0.3 × 0.55 × 0.05 mm, Datensammlung: Wyckoff-scan, $2\theta_{max}$ 55°. Unabhängige Reflexe 7544, davon beobachtet ($F > 3\sigma(F)$) 6164. F_{o} /Parameter-Verhältnis 14.20 Lösungsmethode: Direktes Verfahren, SHELXTL-PLUS. Die Positionen der Wasserstoffatome wurden berechnet und isotrop mit konstanten Parametern be den Verfeinerungen berücksichtigt. R 0.039, R_w 0.035.

Weitere Informationen zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55215, der Autorennamen und des Zeitschriftenzitats angefordert werden.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Förderung unserer Arbeiten.

Literatur

- 1 A. Schäfer, M. Weidenbruch, W. Saak, S. Pohl und H. Marsmann, Angew. Chem., im Druck.
- 2 N. Wiberg, H. Schuster, A. Simon und K. Peters, Angew. Chem., 98 (1986) 100; Angew. Chem., Int. Ed. Engl., 25 (1986) 79.
- 3 M. Weidenbruch, F.-T. Grimm, M. Herrndorf, A. Schäfer, K. Peters und H.G. von Schnering, J. Organomet. Chem., 341 (1988) 335.
- 4 H. Puff, B. Breuer, G. Gehrke-Brinkmann, P. Kind, H. Reuter, W. Schuh, W. Wald und G. Weidenbrück, J. Organomet. Chem., 363 (1989) 265 und hierin zitierte Literatur.
- 5 L.R. Sita und R.D. Bickerstaff, J. Am. Chem. Soc., 111 (1989) 6454.
- 6 A. Haaland, A. Hammel, H. Thomassen, H.V. Volden, H.B. Singh und P.K. Khanna, Z. Naturforsch. B, 45 (1990) 1143.
- 7 M. Weidenbruch, K. Schäfers, K. Peters und H.G. von Schnering, J. Organomet. Chem., 381 (1990) 173.
- 8 S.A. Kandil und A.L. Allred, J. Chem. Soc. (A), (1970) 2987.